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Solution 9

In the following the Initial Value Problem (IVP) refers to x′ = f(t, x), x(t0) = x0, where f
satisfies the Lipschitz condition in some rectangle containing (t0, x0) in its interior, see Notes
for details.

1. Solve the (IVP) for f(t, x) = αt(1 + x2), α > 0, t0 = 0, and discuss how the interval of
existence changes as α and x0 vary.

Solution. The solution is given by

x(t) = tan(tan−1 x0 + αt2/2) ,

where the tangent function is chosen so that tan : (−π/2, π/2) → (−∞,∞). The (maxi-
mal) interval of existence is (−a, a) where

a =
1

α
(π − 2 tan−1 x0) .

We see that for fixed α, the interval shrinks as x0 increases, and for fixed x0, it shrinks too
as α increases. The maximal interval of existence depends on f, t0 and x0 in a complicated
manner.

2. Let x be a solution to the IVP on (c, d), a subinterval of (a, b). Show that it extends to
be a solution on [c, d].

Solution. Pick any sequence tn ↑ d. The sequence {x(tn)} belongs to [α, β] and hence is
bounded. (Here we take R = [a, b]× [α, β] as usual.) There is a subsequence {sk} of {tn}
so that x(sk) converges to some point x1. We claim limt↑d x(t) = x1. For, we have

|x(t)− x(sk)| = |
∫ t

sk

f(s, x(s)) ds| ≤M |t− sk| .

By letting k →∞, we get |x(t)− x1| ≤ M |t− d|, from which we deduce limt↑d x(t) = x1.
Now, we can extend x to up to d by defining x(d) = x1 so that it is continuous up to d.
Moreover, letting k →∞ in

x(sk)− x(t) =

∫ sk

t
f(s, x(s)) ds ,

we get

x(d)− x(t) =

∫ d

t
f(s, x(s)) ds .

Since x is continuous at d, by the Second Fundamental Theorem

x′(d) = lim
t↑d

f(d)− x(t)

d− t
= f(d, x(d)).

Hence x is differentiable at d (more precisely, left derivative exists) and satisfies the dif-
ferential equation.
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3. Let xi, i = 1, 2, be two solutions to the same IVP on the subinterval Ii of [a, b] satisfying
α < xi(t) < β. Show that x1 is equal to x2 on I1 ∩ I2.
Solution. Let I = I1 ∩ I2. For i = 1, 2, we have

xi(t) = xi(t0) +

∫ t

t0

f(s, x(s)) ds , t ∈ I .

By subtracting, as x1(t0) = x2(t0),

|x1(t)− x2(t)| =

∣∣∣∣∫ t

t0

|f(s, x1(s))− f(s, x2)| ds
∣∣∣∣

≤ L

∣∣∣∣∫ t

t0

|x1(s)− x2(s)| ds
∣∣∣∣ .

Let us take t > t0. (The case t < t0 can be handled similarly.) The function

H(t) ≡
∫ t

t0

|x1(s)− x2(s)| ds

satisfies the differential inequality

H ′(t) ≤ LH(t) , t ∈ I+, I+ = I ∩ {t > t0}.

It satisfies H(t0) = 0 and is always increasing. Moreover, it vanishes on I+ if and only if
x1 coincides with x2 on I+. To show that H vanishes, we add an ε > 0 to the right hand
side of this differential inequality to get H ′ ≤ L(H + ε). Writing it as (log(H + ε))′ ≤ L,
and integrating it to get

log(H(t) + ε)− log ε ≤ L(t− t0) ,

or
H(t) ≤ εeL(t−t0), t ∈ I+ .

Now the desired conclusion follows by letting ε→ 0.

Note. This problem is essentially Proposition 3.12 in the revised Chapter 3.

4. Optional. Deduce Picard-Lindelöf Theorem based on the ideas of perturbation of identity.
Hint: Take a particular

y =

∫ t

t0

f(t, x0)dt

in the relation x+ Ψ(x) = y.

Solution. Write the integral form of (IVP) as

x(t)− x0 −
∫ t

t0

(f(s, x(s))− f(s, x0))ds =

∫ t

t0

f(s, x0)ds .

Define Tx(t) = Ψ(x) + y, where

Ψ(x) = −x0 −
∫ t

t0

(f(s, x(s))− f(s, x0))ds .
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Let
X = {x ∈ C[t0 − a′, t0 + a′] : |x(t)− x0| ≤ b}

where a′ = min{a, b/M, 1/L} as before. We first claim, when a′ ≤ b/M , T maps X to
itself. Indeed,

|Tx(t)− x0| = |
∫ t

t0

f(s, x(s))ds| ≤M |t| ≤ b ,

by our choice. Next, claim T is a contraction on X. We have

|Tx1(t)− Tx2(t)| = |Ψ(x1)(t)−Ψ(x2)(t)| =
∣∣∣∣∫ t

t0

(f(s, x1(s)− f(s, x2(s)) ds

∣∣∣∣ ≤ L|t| ≤ a′
by our choice. Now, apply Contraction Mapping Principle to T on X to get a unique fixed
point. It is the solution of our (IVP).

5. Show that the solution to IVP belongs to Ck+1 (as long as it exists) provided f ∈ Ck for
k ≥ 1. In particular, y ∈ C∞ provided f ∈ C∞.

Solution. It is an elementary fact and easy to show that the composition of two Ck-
functions is again Ck. Now, from (1) we see that y is C1 if the RHS, that is, f(x, y(x))
is continuous. By induction, assuming now y is Ck+1 when f is Ck. When f is Ck+1, it
is also Ck and so by induction hypothesis y is Ck+1. The RHS of (1) is the composition
of twonCk+1-functions and hence is also Ck+1. It shows that the LHS y′ is Ck+1, that is,
y ∈ Ck+2, done.

6. Consider the IVP for second order equation:

x′′ = f(t, x, x′), x(t0) = x0, x
′(t0) = x1 ,

where f ∈ C(R), R = [a, b]× [α, β]× [γ, δ]. Assume that f satisfies the Lipschitz condition

|f(t, x, x′)− f(t, y, y′)| ≤ L(|x− y|+ |x′ − y′|) , (t, x, x′), (t, y, y′) ∈ R .

Show that the IVP admits a unique solution in (t0 − ρ, t0 + ρ) for some ρ > 0 by carrying
out the following steps.

(a) Show that the IVP is equivalent to solving

x(t) = x0 + x1(t− t0) +

∫ t

t0

∫ s

t0

f(r, x(r), x′(r)) drds .

(b) Verify the space C1[a, b] is complete under the norm

‖x‖1 = ‖x‖∞ + ‖x′‖∞ .

(c) Apply the Contraction Mapping Principle in a closed subset of (C1[a, b], ‖ · ‖1).

Solution. (a) As the first order case, except now we integrate one more time.

(b) Let {xn} be a Cauchy sequence in this normed space. It means that both {xn} and
{x′n} are Cauchy sequence in supnorm. By the completeness of C[a, b] in supnorm, there
are x, z ∈ C[a, b] such that xn and x′n converge to x and z uniformly. From the defining
relation

xn(t)− xn(s) =

∫ t

s
x′n(r) dr ,
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we pass limit to get

x(t)− x(s) =

∫ t

s
z(r) dr ,

which shows that z = x′, so {xn} converges in the norm ‖ · ‖1.
(c) It is routine to verify, for each small ρ > 0, the set

X = {x ∈ C1[t0 − ρ, t0 + ρ] : x(t) ∈ [α, β], x′(t) ∈ [γ, δ]}

is a closed subset in C1[a, b] so it is also complete under ‖ · ‖1. As in the first order case,
we define

(Tx)(t) = x0 + x1(t− t0) +

∫ t

t0

∫ s

t0

f(r, x(r), x′(r)) drds ,

and verify that when δ is small, it is a contraction from X to X and hence admits a fixed
point.

7. Show that there exists a unique solution h to the integral equation

h(x) = 1 +
1

π

∫ 1

−1

1

1 + (x− y)2
h(y)dy,

in C[−1, 1]. Also show that h is non-negative.

Solution. Let X = C[−1, 1] be the complete metric space we work on and set

(Th)(x) = 1 +
1

π

∫ 1

−1

1

1 + (x− y)2
h(y)dy.

It is easy to check that T is continuous on X. For h2, h1 ∈ C[−1, 1], we have

|Th2(x)− Th1(x)| =

∣∣∣∣ 1π
∫ 1

−1

1

1 + (x− y)2
(h2(y)− h1(y))dy

∣∣∣∣
≤ 2

π
‖h2 − h2‖∞, ∀x ∈ [−1, 1].

Hence T is a contraction on C[−1, 1], and a fixed point is ensured by Banach’s Fixed Point
Theorem.

Next we show that the fixed point h is non-negative. Notice that

1

π

∫ 1

−1

1

1 + (x− y)2
dy =

1

π
[arctan(1− x) + arctan(1 + x)] ≤ 1

2
, x ∈ [−1, 1].

From the def of h we have

‖h‖∞ ≤ 1 +
1

2
‖h‖∞,

which implies ‖h‖∞ ≤ 2. It follows that

h(x) ≥ 1− 1

π

∫ 1

−1

1

1 + (x− y)2
‖h‖∞dy ≥ 1− 1

2
× 2 ≥ 0,

h is non-negative.

An alternate approach. We work on the space Y = {h ∈ C[−1, 1] : h(x) ≥ 0,∀x}. From
the definition of T , it is clear that T maps Y to Y . Since Y is easily shown to be a closed
set in C[−1, 1] (hence complete), we apply the Contraction Mapping Principle directly to
get a non-negative solution.


